[机械、仪表工业] | 周永章#陈烁#张旗#肖凡#王树功#刘艳鹏#焦守涛 |
《广东省地质过程与矿产资源探查重点实验室》 | 2022-11-03 |
浏览:316
摘要:
大数据与数学地球科学的核心应用技术包括高维数据降维、图像数据处理、无限数据流挖掘、机器学习、关联规则算法与推荐系统算法等。人工智能地质学,包括大数据智能矿床成因模型与找矿模型的构建,是具有重要价值的研究方向。高维数据降维旨在从初始高维特征集合中选出低维特征集合,有效地消除无关和冗余特征,增强学习结果的易理解性。哈希
算法、聚类分析、主成分分析等是较常用的数学降维工具。机器学习是人工智能的核心,是使计算机具有智能的根本途径。机器学习与人工智能各种基础问题的统一性观点正在形成。深度学习的训练模型往往需要海量数据作为支撑,因此迁移学习方法日益受到重视。图像模式识别是大数据挖掘的重要技术。网络中的社区结构识别对理解整个网络的结构和功能有重
要价值,可帮助分析、预测网络各元素间的交互关系。沉浸式虚拟现实技术是实现大数据可视化的重要方向,对具有多元、异构、时空性、非线性、多尺度地质矿产勘查数据的展示要求有特别的价值。引入 VR技术进行矿产地质大数据的可视化,可实现大数据时代矿产勘查数据的新认知。无限数据流在地质、地球化学、地球物理监测中大量存在,甚至可以持续自动产生。对数据流数据的计算包括对点查询、范围查询、内积查询、分位数计算、频繁项计算等。关联规则和推荐系统算法是大数据挖掘中的重要算法,其应用范围越来越广泛。贝叶斯原理在大数据时代有独特的价值,贝叶斯网络是成因建模的一个革命性工具。智能地质学研究刚刚起步,构建大数据智能矿床成因模型与找矿模型是智能地质学研究的重要内容。矿床模型研究方式的变革,将出现于互联网、云计算技术环境下全球各地的矿床研究团队的共同参与。
|
|||||
[机械、仪表工业] | 周永章#王俊#左仁广#肖凡#沈文杰#王树功 |
《广东省地质过程与矿产资源探查重点实验室》 | 2022-11-03 |
浏览:273
摘要:
地质大数据正在以指数形式增长。只有发展智能数据处理方法才有可能追上大数据的超常增长。机器学习是人工智能的核心,是使计算机具有智能的根本途径。机器学习已成为地质大数据研究的前沿热点,它将让地质大数据插上翅膀,并因此改变地质。机器学习是一个源于数据的模型的训练过程,最终给出一个面向某种性能度量的决策。深度学习是机器学习研究中的一个重要子类,它通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。卷积神经网络算法是最为常用的一种深度学习算法之一,它广泛用于图像识别和语音分析等。Python语言在科学领域的地位占据着越来越重要。其下的 Scikit Learn是一个机器学习相关的库,提供有数据预处理、分类、回归、聚类、预测、模型分析等算法。Keras是一个基于 Theano/Tensorflow的深度学习库,可以应用来搭建简洁的人工神经网络。
|